Weighted partition consensus via kernels

نویسندگان

  • Sandro Vega-Pons
  • Jyrko Correa-Morris
  • José Ruiz-Shulcloper
چکیده

The combination of multiple clustering results (clustering ensemble) has emerged as an important procedure to improve the quality of clustering solutions. In this paper we propose a new cluster ensemble method based on kernel functions, which introduces the Partition Relevance Analysis step. This step has the goal of analyzing the set of partition in the cluster ensemble and extract valuable information that can improve the quality of the combination process. Besides, we propose a new similarity measure between partitions proving that it is a kernel function. A new consensus function is introduced using this similarity measure and based on the idea of finding the median partition. Related to this consensus function, some theoretical results that endorse the suitability of our methods are proven. Finally, we conduct a numerical experimentation to show the behavior of our method on several databases by making a comparison with simple clustering algorithms as well as to other cluster ensemble methods. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Clustering Ensembles

Cluster ensembles offer a solution to challenges inherent to clustering arising from its ill-posed nature. Cluster ensembles can provide robust and stable solutions by leveraging the consensus across multiple clustering results, while averaging out emergent spurious structures that arise due to the various biases to which each participating algorithm is tuned. In this paper, we address the prob...

متن کامل

CampProf: A Visual Performance Analysis Tool for Memory Bound GPU Kernels

Current GPU tools and performance models provide some common architectural insights that guide the programmers to write optimal code. We challenge these performance models, by modeling and analyzing a lesser known, but very severe performance pitfall, called ‘Partition Camping’, in NVIDIA GPUs. Partition Camping is caused by memory accesses that are skewed towards a subset of the available memo...

متن کامل

Learning to Diversify via Weighted Kernels for Classifier Ensemble

Classifier ensemble generally should combine diverse component classifiers. However, it is difficult to give a definitive connection between diversity measure and ensemble accuracy. Given a list of available component classifiers, how to adaptively and diversely ensemble classifiers becomes a big challenge in the literature. In this paper, we argue that diversity, not direct diversity on sample...

متن کامل

Voting-Based Consensus of Data Partitions

Over the past few years, there has been a renewed interest in the consensus problem for ensembles of partitions. Recent work is primarily motivated by the developments in the area of combining multiple supervised learners. Unlike the consensus of supervised classifications, the consensus of data partitions is a challenging problem due to the lack of globally defined cluster labels and to the in...

متن کامل

Weighted Inequalities on Morrey Spaces for Linear and Multilinear Fractional Integrals with Homogeneous Kernels

In this paper, we consider weighted inequalities for linear and multilinear fractional integrals with homogeneous kernels on Morrey spaces. Recently, weighted inequalities without homogeneous kernels were proved by the authors. In this paper, we generalize ones with homogeneous kernels.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2010